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We consider in this paper the hydromagnetic flow of a viscous, incompressible, 
electrically conducting fluid induced by the differential rotation of an insulating 
boundary. A uniform magnetic field parallel to the axis of rotation is applied at 
a large distance from the interface. The method of matched asymptotic expan- 
sions is employed to study the hydromagnetic coupling between different regions 
of fluid flow and the interior of the insulating boundary. 

1. Introduction 
In  this paper we study the influence of differential rot'ation of the container 

on the behaviour of a rotating, incompressible, electrically conducting fluid 
under hydromagnetic interaction. It has been established by Benton & Loper 
(1969) and Chawla (1972) that the evolution (spin-up) of such a flow from rigid- 
body rotation leads to the formation of a double-decker boundary layer on the 
parts of the container in contact with the fluid. Our aim here is to analyse the 
flow and the magnetic field in both the regions in their nonlinear forms. The 
specific purpose of the present paper is to study the intensity of hydromagnetic 
coupling between different regions of fluid flow and to investigate the nonlinear 
changes in the applied magnetic field which may be supported by the (inner) 
boundary layer on the rotating boundary. Surprisingly, the dynamics of the 
outer region are crucial for both of these physical phenomena. 

Some aspects of the physical problem described here have been considered by 
Gilman & Benton (1968) and Benton & Chow (1972). Their analyses, however, 
preclude the discussion of the outer magnetic diffusion region on the assumption 
that it is spatially uniform. Loper (1972), on the other hand, has studied a non- 
linear resistive boundary layer which is supported by a steady forcing introduced 
through axial electric currents in the far field. He excluded the viscous and 
nonlinear inertia forces from his analysis. Moreover, the existence of Loper's 
boundary layer depends upon the axial field, axial current and rotation being 
of the same sign. The present paper differs in a fundamental way from that of 
Loper (1972) in that it includes the effects of the viscosity of the fluid. We find 
that viscosity, in combination with other effective forces, manifests itself through 
its ability to provide a proper balance in whole of the flow regime affected by 
hydromagnetic interaction. 
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The study of the magnetohydrodynamics of rotating fluids has applications in 
several situations of geophysical and astrophysical interest. It is likely to explain 
the observed phenomenon of secular variations and maintenance of the geo- 
magnetic field. It may also establish the degree of electromagnetic coupling of 
the electric currents flowing in the convective envelope of some of the stars to 
their interior. The study of hydromagnetic spin-up is somewhat connected with 
the temporal evolution of rotating magnetic stars. A direct application of the 
results derived here to any of these physical problems is, however, severely 
hampered by the idealization employed in the paper. 

2. The mathematical formulation 
We consider the situation in which a homogeneous fluid of constant viscosity 

v and magnetic diffusivity r is bounded by a rigid insulating half-space 2 < 0 
with the whole space permeated by a magnetic field of constant strength Ho in 
the 2 direction. This system is in a state of rigid-body rotation of angular velocity 
B about the 2 axis. The insulator, in contact with the fluid, is now assumed to be 
rotating with angular velocity sZ( 1 + e) whereas the fluid at infinity is left in the 
undisturbed state of rigid-body rotation. The magnetic field in the fluid at 
infinity is constrained to be in the axial direction, and all the boundary conditions 
are to be written accordingly. 

We take cylindrical polar co-ordinates (r,  8, 2) with an accompanying fluid 
velocity V, magnetic field H and hydromagnetic pressure p .  For consistency 
with the axial symmetry and the continuity equations, we define 

V = rsZ[F'P+ ( 1  + G ) 6 ]  -2(vB)* F g ,  (2.1) 

, r / r ) ( v B ) ~ [ N ' P + M 6 ] + H 0  1 +- N 2, (2.2) 

(2.3) 

H = - ( H  ( 3  
p = +2B2 + P, 

where F ,  G ,  M, N and P are functions of the dimensionless variable z = (B/v)$Z 
and a prime denotes differentiation with respect to z. Moreover, p is the density 
of the fluid and P, 6 and -2 are unit vectors in the r ,  8 and z directions respectively. 
Substituting (2.1)-(2.3) in the basic hydromagnetic equations leads to 

P"+2G-2hNtf  = Ff2-2FF"-G2-22h~[N'2-2NNf' -  M 2 ] ,  (2 .4)  

Grf-2F'-2hM' = 2 ( G F ' - F G f ) - 4 h ~ ( M N ' - N M f ) ,  (2 .5)  

M"-  G f  = 2a(NG' - F M ' ) ,  (2 .6)  

N"-  F' = 2 a ( N F ' - F N ' ) ,  (2 .7)  

h = , ~ H t / 2 p v Q ,  = v/r. (2 .8)  

where h and u are the dimensionless parameters defined by 

Here a is the magnetic Prandtl number and h measures the strength of the 
magnetic force relative to the centrifugal force. In terms of M and N ,  the current 
density vector is 

J = (Ho/r)  [rQM'P - rQN"6 - 2(vQ)* M a ] .  (2.9) 
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Because no currents flow in the insulating half-space, clearly M must be zero 
at z = 0. A bounded solution of (2.7) within the insulator is N' = 0 (for z < 0). 
Also, all perturbations to the applied magnetic field must vanish at large distances 
from the interface z = 0. Thus the appropriate boundary conditions on the velo- 
city and magnetic fields are 

] (2.10) 
P'(0) = 0, G(O) = E ,  P(0) = 0, P'(w) = 0 = G(co), 
M(0)  = 0, "(0) = 0, M(co) = 0 = N(CO). 

It needs to be pointed out that these boundary conditions are different from 
those imposed by Gilman & Benton (1968), Benton & Chow (1972) and Loper 
(1972). I n  the present notation Gilman & Benton and Benton & Chow use the 
following conditions on the magnetic field: 

M ( 0 )  = "'(0) = 0, "(0) = constant, N(co)  = N'(co) = M'(co) = 0. 

The weakness of these conditions is exposed immediately as the continuity of the 
tangential component N' leads to N = N'(0)z +constant for z < 0; this solution 
blows up as z+--o3. In  order to maintain a steady forcing by electromagnetic 
forces, Loper (1972) introduces a non-zero axial current in the far field and uses 
the following conditions at the fluid-solid interface: 

} (2.11) 
P(0) = 0, M ( 0 )  = 0, "(0) = 0, M'(0) = constant (prescribed), 

N ( 0 )  = constant (prescribed). 

As pointed out by Loper (1972), these conditions need to be revised when h is 
small or when the insulating boundary is rotating relative to the far fluid. More- 
over, they require a prior knowledge of the axial derivative of the axial current at 
the boundary. Boundary conditions (2.10) are the only physically consistent 
conditions for the situation under consideration. Precisely the same conditions 
were used by Benton & Loper (1969) in their study of the linearized transient 
time development of Ekman-Hartmann layers. They were, however, confronted 
with a non-uniform approach to the ultimate state since their steady-state 
solution did not satisfy all the boundary conditions. This is apparently due to 
the inadequacy of the linearized system, which fails to account for the balance 
between magnetic diffusion and magnetic convection and for the associated 
singular terms (in the limit E -+ 0). 

In  order to expose the effect of differential rotation over the whole of the flow 
regime we employ the method of matched asymptotic expansions. This method 
is effective, though complicated, largely because the hydromagnetic flow has a 
distinct double-layered structure. The inner layer is the well-known Ekman- 
Hartmann layer and results from the viscous-centrifugal-magnetic force 
balance near the rigid boundary. The outer layer, on the other hand, serves to 
balance the magnetic diffusion and the magnetic convection of the radial and 
azimuthal field by the axial inflow. In  the nonlinear treatment the outer layer 
also provides the necessary balance between the electromagnetic body force and 
the centrifugal force in the far field. In  the next two sections we derive asymptotic 
expansions valid in each of these regions. In  this paper we are concerned with 
the solution for 0 < E < 1. 

26-2 
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3. Asymptotic expansions for the inner layers 
For 6 < 1 ,  it  is appropriate to develop each of the unknown functions F, G, M 

and N as an asymptotic power series in 6.  The imposed tangential shear (of order 
E )  due to the differential rotation distorts the magnetic field lines, which would 
otherwise be in the axial direction. This results in the generation of electric 
currents which persist outside the inner layer. Also the induced inflow a t  infinity 
stretches the vortex lines and the magnetic field lines. The magnetic diffusion 
away from the interface and the magnetic convection towards the interface are 
balanced to form the outer boundary layer. The nonlinear changes in the applied 
axial magnetic field are communicated to the insulator through the Ekman- 
Hartmann layer. We anticipate that such changes are of order unity, so that we 
assume the field functions to be of the form 

(3.1) I P = EP'+E~P~+ ..., 
M = dHl+~2M2+ ..., 

G = €G1+e2G2+ ..., 
N = No+dVl+~2N,+ .... 

Substituting (3 .1 )  in (2.4)-(2.7) and equating the coefficients of like powers of B,  

we get 
No = constant, (3 .2)  

P'; - 2iP1 - 2 4  I + 2rNo)Q; = 0, &; - ( 1  + 2rNo)P; = 0, (3 .3)  

PI;-2iP2-22h(1 +2aN,)QL = P ~ - Z F , P ~ - 2 h a ( Q ~ - 2 N i Q ; ) ,  (3 .4a )  

Q" - (1 + 2aNo) P; = Za(N1 Pi - 3'1 Qi), (3 .46)  

and so on. In  these equations 

3. = .F;+iG,, Q, = N;+iMj ( j  = 1 ,2 ,  ...). (3 .5)  

Pl(0) = i, q+l(0) = 0, Qj(0) = 0 = q(0)  ( j  = 1,2 ,  ...). (3.6) 

The boundary conditions for the inner layer are 

To complete the specification of the physicaI system, more conditions on 4, Qi 
and N, are required. These are supplied by matching the inner-layer expansions 
to the outer expansions. 

The solution of the order4  system (3 .2) - (3 .6)  is 

(3 .7a )  

Q - - ( l - e - m Z ) ,  ilc N - ik - [ - ( z + - e - ~ ~ ) - - - $ ( z + ~ e - ~ * ~ ) ] + A ,  1 1 1 (3 .7b)  
l - m  I - 2 m  m 

m(mm* + m*2 - 4hak2) 
'2 = m*3(m + m*) (zrn + m*) 

(e-rnz - exp [ - (m + m*)z]> + B( 1 - e-w) 

m 10hak2 6 h d 2  8iArkA hd2(m*  - m)z2 e-, (3 .8a)  I--+---- 
m* m2 mm* m2m* 
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(e-mz - 1 )  Q 2 =  (-- m m*3(m + m*) (2m + m*) 
B m*2 + mm* - 4halc2 

3(m-m*)7~+2iAm%* (m - m * m  e-ma 
( 1  - e-mz) - 

m2m* 

(3.8b) 

where k = 1 + 2rN0, m = (2i + 2hk2)*, (3.9) 

and an asterisk denotes the complex conjugate of the function under it. Expres- 
sions for F2 and N2 are obtained after integrating ( 3 . 8 ~ )  and (3.8b). The above 
solution contains four unknown constants, namely k and A (real) and B and C 
(complex). One more unknown constant will occur in the expression for N2. All 
these constants are to be evaluated from the conditions for matching (as z-+co) 
with the outer expansion. 

4. Asymptotic expansions for the outer layers 
We note from (3.3) that the expansion procedure adopted has reduced in 

importance the terms representing convection of magnetic field lines. The 
solutions (3.2), (3.7) and (3.8) may thus only be considered as inner solutions and 
there must be an outer region in which there is a balance between magnetic 
diffusion and magnetic convection. We must therefore develop a solution in the 
outer region which is complementary to, and matches with, the inner solution. 
I n  this outer region, which is O(e-1) times as thick as the inner boundary layer, 
we set 

c = €2, F(z)  = Ef(c), G(z)  = e2g(E), M = em(& N(z)  = n(0. (4.1) 

Writing p = f’ + ig and q = n‘ + im, where a prime now denotes differentiation 
with respect to <, we seek a solution of the form 

2467 4 = .2 SfPj(<), etc. 
3 = 0  

of the equations 
2ip +2hq’ = 2hcr(q2-2nq’) +e2@”+2fp’-p2), ( 4 . 2 ~ )  

q” -p‘ = 24np’  - fq’). 

p(c0) = 0, q(c0) = 0,  n(co) = 0 
under the conditions 

(4.2b) 

(4.3) 

together with the conditions that as g-+ 0 the solution of (4.2) should match the 
limit as z+co of the solutions (3.2), (3.7) and (3.8). The first two terms of the 
outer asymptotic expansion are given by 

(4.4) 

i P l + W  = 2 ~ ~ ( q o q l - n o ~ : - n l q ; ) ,  d - P ;  = 2 ~ ( n o ~ , ; + n l p ; - f o q ; - f l q ; ) .  (4.5) 

ipo + hq; = h d q i  - 2n, q;), as -pi = 2dnOp; -fo q;), 
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It is evident from (4.2)-(4.5) that the induced electromagnetic body force 
dominates the nonlinear part of the inertia in the outer region. In  addition to 
providing the necessary balance between magnetic diffusion and magnetic con- 
vection, the outer region, to order € 2 ,  serves to balance the electromagnetic body 
force and the centrifugal force. The solution of the nonlinear coupled equations 
(4.4) is basic to the whole of the above system of differential equations. 

Precisely the same equations as (4.4) have been solved numerically by Loper 
(1972) under different boundary conditions. A significant difference in Loper's 
analysis is that he introduces a prescribed axial current at  infinity. I n  the present 
notation the existence of Loper's boundary layer appears to depend upon the 
sign of the expression 

This expression happens to change sign as the strength of the applied magnetic 
field is increased. Thus Loper concludes that the solution to his problem does 
not exist for sufficiently large A. I n  the present case, we maintain m(m) = 0, and 
the existence of the boundary layer depends upon the sign of the axial velocity 
alone. Using the proper matching conditions, which again differ from the boun- 
dary conditions (2.11) of Loper, we find that the axial velocity is negative for all 
values of A. Evidently a negative axial velocity always helps to maintain the 
boundary layers. In  the outer region, viscosity manifests itself through the 
matching conditions. 

We proceed to solve (4.4) for p ,  and qo by a method due to Fettis (1955). This 
method has been used with advantage by Benton (1966, 1973), Stuart (1966) 
and Chawla (1973) to solve different problems in hydrodynamics and hydro- 
magnetics. The main merit of this method is that it gives the correct, exponential 
behaviour at infinity. 

f(a) -Hom(m). 

We write 

(4.6) 

with (4.7) 

where a is a constant to be determined and the parameter s is later set equal to 
unity. The constant a, which is real, gives the axial inflow at infinity and is 
obtained, alongwith other constants of integration,from the matching conditions. 

Substituting (4.6) in (4.4) and equating the coefficients of equal powers of s, 
we get the following system of differential equations: 

1 p ,  = spol + s2p02 + * . . , q, = sqol + s2q02 + . . . , 
fo = a +sfol + s2foz + . . . , no = sn,, + s2n02 + . . . , 

qoi+l(0) = 0 = pOj(m) =fOj(a) = q o j ( a )  = n,j(m) ( j  = 1,2, ...), 

ip,1+ Aq& = 0, q;rl -p& + 2aaq;, = 0, (4.8) 

( 4 . 9 ~ )  

(4.9b) 

+02 + Aq;z = ACT CQ& - 2n01q&l7 

abz - A 2  + 2a432 = 2fT [no1 PA1 -fo1 a & l 7  

and so on. The solution of (4.8) is 

pol = -iAple-"[, qol = Be-", (4.10) 

where p is a constant and 
1 = 2aa( 1 + a)/( 1 + A 2 ) .  (4.11) 
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Using (4.10), the solution of (4.9) is found to be 

Az(z+z*))  exp [ - (I+ Z*)Q + 
1” 

(4.12b) 

The functionsp,,, po3 etc. may be calculated in a similar way. The first four terms 
in the series (4.6) were calculated for the purpose of matching the inner and outer 
solutions. 

In  order to solve the differential set (4.5), again by Fettis’s (1955) method, we 
write 

(4.13) 

with = 0 = plj(oo) =flj(co) = qIj(o0) = nli(co) ( j  = 1,2, ...), (4.14) 

where S is a real constant; as gives the axial inflow, of order e2, a t  infinity. We 
substitute (4.6) and (4.13) into the set (4.5) and equate the coefficients of equal 
powers of s. The solutions of the resulting differential equations for (pll, qll), 

pll = -iAyZe-lg, qI1 = ye-lE, (4.15) 
(1112, q12L etc. are 

Az(z:z*)) exp[-(I+Z*)~]+Fe-z~ , ( 4 . 1 6 ~ )  x2 1 P12 = 

(4.16 b )  

and so on, where y is a constant. 
The outer solution, as obtained above, contains four unknown constants, 

namely a and 6 (real) and ,4 and y (complex). These are to be determined from 
the matching conditions. 

5. Matching of the inner and outer expansions 
We now evaluate the constants k, A ,  B and C and a, 6, y and p occurring in the 

inner and outer expansions respectively. These are obtained from the condition 
that the inner solution (as z - t co )  must match properly with the outer one (as 
E - t O ) .  For a proper matching the velocity and magnetic fields and also the 
current density must be continuous across the two regions of fluid flow. This 
means that the inner and outer expansions of the functions P, P, Q, N and Q’ 
must match to the same order in 6. 

The matching condition Q1(co) = po(0) immediately leads to 

iklm = /i’ = ik(2i + 2hk2)-*. (5.1) 

The real constants k and a are then given by the conditions PI(co) = fo(0) and 
N,(co) = no(0). Using a four-term series solution (4.6) for the outer expansion 
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(after setting s = l),  these conditions lead to the following equations for a and k: 

(iim - iim*) a3 = 2a4 + ih(p- p*)a3 + ~pp*a2 
+ h"P* - [ (A2-  3 )  (p+p*) + 4ih(P-P*)l  a: 

h2+9 

(P2 + P*2) 
3 + 22A2- 5h4 6 - 41A2+ 25h4 

ih( 17 - 51h2 + 4A4) - 
( 4 + h 2 )  (9+h2)  

( 5 . 2 ~ )  

(IC - q a 4  = [ i ~ ( p - p * )  - (p+p*)] a3 + ~2pp*~2  

[(9A2- 15) ( ,!?+p*)-ih(A2-23) (p-p*) ]a 
+ 4(h2+ 9 )  

- ih(lO-23h2+3h4) 
( 4  + h2) ( 9  + h2) 

(5 .2b)  

Although not containing cr explicitly, equations (5 .2 ) ,  together with (5 .  l) ,  are 
highly complicated to solve. We solve these equations for small and large values 
of the dimensionless parameter h and obtain the following expressions for a, k 
and ,8: 

P =  

a =  

k =  

3h 77h2 
384 

( A  small), (5 .3a)  

($A): (1 + O(h-2)) ( A  large), (5 .3b)  

( A  small), (5 .4a )  

1 + O(h-2) ( A  large), (5 .4b)  

3h 17h2 h 25h2 1 (1 - + 24 + o(~3) + - i -- + - + o(h3) ( A  small), (5 .5a )  
4 ) %(  8 48 

( A  large). (5 .5b)  

We now obtain B from the condition P2(oo) = ~ ~ ( 0 ) :  

&A( 1 - +A) - &icrh( 1 - @) + O(h3) ( 5 . 6 ~ )  
2 i ~ (  1 - 3 i /h )  + O(h-') ( A  large). (5.6b) 

Once B has been determined, the constant C in the expression (3 .8b )  for Q2 is 
obtained from the condition that the tangential electric currents across the two 
regions must be continuous; that is &;(a) = qh(0). We get 

( A  small), 
B = (  

C = - crk/m2 - iB/hk. (5.7) 

We note that, in the above process of matching the inner and outer solutions, 
proper account has already been taken of the non-exponential coefficients of z 
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in Q,, F, and N,, through the matching of Q;, P, and Q,, respectively. We there- 
fore set 

(5.8) I " l - g ( P + P * ) z l , - + m  = n1(0), 
[ Q z -  Qz]p+m = 41(0), [pz- 4(B + B*)zIa+m = f i ( O ) ,  

in order to evaluate the remaining constants A ,  6 and y. These conditions lead 
to a complicated coupled system of equations for A ,  6 and y. We omit details but 
give the values of these constants for small and large values of A: 

(5.9a) 

- 2 + O(h-2) large), (5.9 b )  

+ O(h2) ( A  small), (5.10a) 3 9 h  47hO- +--- 

+ z  ---+-+- +O(A2)  (hsmall), (5.11a) 
--+---+- 3 50- 69h 69ha 9 50- 3h 9 h a  

8 16 800 320 *(80 16 100 80 

(4i0- / (2h)J + O(h-3) ( A  large). (5.11b) 

6.  Discussion of results 
Although the asymptotic expansions for the flow and magnetic field functions 

F ,  G ,  M and N constitute an essentially nonlinear multilayered structure, they 
vary on two vastly different spatial scales. The two regions governed by the two 
length scales are such that the thickness of the inner layer decreases and that 
of the outer layer increases as the strength of the applied magnetic field is 
increased. Following Benton & Loper (1969), we call the two regions the Ekman- 
Hartmann layers (EHL) and the magnetic diffusion region (MDR). The edge of 
the EHL provides a smooth transition between the two regions, and the matching 
conditions for the inner and outer asymptotic solutions were chosen accordingly. 

Actually there are four regions of influence of the nonlinear hydromagnetic 
interaction due to the differential rotation: the interior of the insulator, the EHL, 
the MDR and the region far away from the interface (outside the MDR). The 
present solution provides all the information about the physical characteristics 
in each of these regions as our focus of attention moves from the rigid body to the 
far field. We now proceed to consider some important features of the flow and 
magnetic field in different regions by making use of the simplifying calculations 
of the previous section. 

6.1. Ekman-Hartmann layers 

The EHL result from the viscous-centrifugal-magnetic force balance near the 
rigid boundary. The thickness of the EHL is O(m;l), where 

m = m, + imi = [( 1 + h2k4)4 + hk2]4 + i [( 1 + h2k4)4 - hk2]*, (6.1) 

and k varies from 9 to I as the strength of the applied magnetic field is increased. 
In  the linear theory (Benton & Loper 1969) k = 1. Although the thickness of the 
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EHL decreases with increasing A, the EHL are thicker (for a given strength of 
the applied magnetic field) than is predicted by the linear theory. 

The velocity field P = sPl +e2Pz, given by (3.7) and (3.8), reduces uniformly 
to the result previously obtained by Rogers & Lance (1960) for the case h = 0. 
However, it  differs significantly from the corresponding result of Benton & Chow 
(1972). The EHL, like Ekman layers, possess oscillatory structure, but the 
applied magnetic field tends to suppress their oscillatory character. 

The real importance of the EHL rests in their ability to induce mass flux 
(suction) and electric currents into the MDR. The Ekman-Hartmann pumping 
into the outer layer is given by 

whereas the Hartmann axial current induced into the outer layer is given by 

) ( A  small), ( 6 . 3 ~ )  
em(0) = 

[e( 1 + 4e(r)/(2h): + U(h-6) ( A  large). (6.3b) 

Equation (6 .2 , )  reduces to the result of Rogers & Lance (1960) for h = 0. Com- 
pared with the linear Ekman-Hartmann pumping, which is equal to 

[( 1 + h2)* - h]*/2( 1 + h2)3, 

the nonlinear theory gives a larger mass flux in the limit e -+ 0; the mass flux 
itself decreases with increasing A. This is evidently due to the fact that the 
magnetic field supporting the Ekman-Hartmann layer is weaker than the 
applied magnetic field; the hydromagnetic interaction owing to differential 
rotation brings about nonlinear changes of order unity in the applied field. We 
shall return to this point later on. To zeroth order in e, the axial magnetic field 
( =  kH,) remains constant through the thickness of the EHL. 

6.2.  .Magnetic digusion region 

The development and establishment of the MDR, as the outer layer, are im- 
portant features of the hydromagnetic interaction in a rotating environment. 
The MDR primarily results from the balance between the outward magnetic 
diffusion and the inward convection. It also serves to balance the induced 
electromagnetic body force and the inertia of induced rotation. The thickness 
of this region, which is much thicker than the EHL, is O(e-li!~~), where 

I = I ,  + iZi = 2 a a (  1 + iA)/( 1 + h2) 

(6 .4 , )  

( A  large). (6.4b) 

From the relationship between the various parameters, we find that the thickness 
of the outer region in general increases from O(y/(vQ)bs) to O(Ai/eQ2(vy)5)  with 
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increasing strength of the applied magnetic field; A ,  is the Alfvh velocity 
(pH;/p)O),. For finite values of e and a, the outer region extends to finite distances. 
In  contrast, the analyses of Gilman & Benton (1968) and Benton & Chow (1972) 
imply that the outer layer (MDR) extends to spatial infinity. Clearly the MDR 
is also nonlinear and is oscillatory in character. The spatial oscillations become 
more pronounced with increasing A. For all finite, though small, values of the 
magnetic Prandtl number v, the diffusivity of the fluid is important indetermining 
the conditions in the outer region. 

The azimuthal velocity of the edge of the EHL is given by 

- ah ( I  - $A)$ ( A  small), ( 6 . 5 ~ )  { 2ve2+ O(A-2e2) ( A  large), (6 .5b)  
@ q ( O )  = 

whereas the radial velocity is given by 

Bahfl- &Ale2 (A small), 
h + O ( k 3 e 2 )  ( A  large). 

‘f 2 ’ 0  ( ) =  {6ae 
( 6 . 6 ~ )  
(6.6b) 

For low values of A, the region just outside the EHL develops a rotation, albeit 
very slow, in the direction opposite to that of the main rigid-body rotation. For 
large values of A ,  on the other hand, the induced tangential electromagnetic 
force makes this region rotate in the same direction as the basic rotation. This, 
together with the fact that the thickness of the MDR increases with A, brings 
additional layers of the conducting fluid under the influence of the differential 
rotation of the rigid boundary as the strength of the applied magnetic field is 
increased. As a result, for sufficiently large values of A, the transitional region 
of the fluid will rotate with angular velocity a( 1 + 2ve2). 

An important consequence of the hydromagnetic interaction under considera- 
tion is the distortion of the applied axial magnetic field owing to the stretching 
of the vortex lines by the Ekman-Hartmann pump. In  contrast to the basic 
applied magnetic field H,, the net external axial field supporting the EHL is 
given by 

H,( 1 + 2an(O)) = Ho(k + 2aAe) 

3 5 a  129h 137ah 
= y ( l - ” ; i ) + € ( - - - - -  40 8 1600 +-)I 320 ( A  small), ( 6 . 7 ~ )  

Ho( 1 - 4ae) + O(A--2) ( A  large). (6 .7b)  

Compared with this, the normal field induced within the insulating boundary is 

H,( 1 + 20-N(0)) = 

- - 

H,(1 +2aNo(O) + 2mN,(O)) 

3 a 129A 97aA + s H  

( A  small), ( 6 . 8 ~ )  

H,( I - 4us) + O(A-2) ( A  large). (6 .8b )  
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We find that substantial changes (of order unity) in the basic axial field over the 
entire width of the flow regime can be effected and sustained by even a small 
differential rotation. It is interesting that the bulk of the distortions of the 
applied field take place within the MDR, although these changes are brought 
about by the Ekman-Hartmann pump a t  the edge of the EHL. Roberts & Scott 
(1965) have stated that the changes in the magnetic field across the boundary 
layer at the core-mantle interface within the earth must be small. Evidently 
their argument involving a non-rotating boundary is not valid for a rotating 
boundary. The differential rotation across different layers of the EHL stretches 
the axial field into an azimuthal component [see (6.3)]. The body force associated 
with this azimuthal component is primarily responsible for the induced angular 
velocity of the main body of the MDR [see (6.5)]. 

Associated also with the azimuthal component is an axial current which turns 
into the radial direction [see (2.9)] within the MDR and interacts with the axial 
magnetic field to produce an electromagnetic body torque. Fluid is then pro- 
pelled outwards by centrifugal action [see (6.5)] and, by continuity, an axial 
inflow is induced a t  the outer edge of the MDR. The suction velocity in the far 
field is given by 

Ef(C0) = €a(l +€a) 

( 6 . 9 ~ )  

(6.9b) 

For A = 0, (6.9a) reduces to the result obtained by Rogers & Lance (1960). The 
inflow velocity increases with A. This is natural in view of the fact that the thick- 
ness of the MDR increases with A, and more and more fluid is required to replace 
the outward radial flow within the MDR. For 6+0, the present nonlinear 
analysis gives an inflow velocity (for given A )  smaller than the value 

( =  +[(1+h2)t+h]J) 

obtained by Benton & Loper (1969) from a transient linearized analysis. How- 
ever, for large values of A, (6.9b) agrees with the corresponding results of Benton 
& Loper (1969). Nevertheless, the nonlinearity, which is undoubtedly more 
pronounced for weaker hydromagnetic coupling, retains its importance (for large 
A )  as a balancing factor (even for E-+ 0) between different effective forces in the 
far field. 

The time for the transient evolution (called the spin-up time) of the double- 
decker boundary layers is an important time scale. Benton & Loper (1969) have 
shown that with increasing strength of the applied magnetic field the Ekman- 
Hartmann layer develops more rapidly (see also Chawla 1972). At the same time 
the induced tangential electromagnetic body force acts to spin up the fluid in 
the outer region. For a sufficiently strong applied magnetic field the Ekman- 
Hartmann layers develop in a time of order 2/ (AQ)  (Benton & Loper 1969) and 
during that time the edge of the EHL attains an angular velocity Q(l +2ae2). 
In  the ultimate state the inflow velocity at the outer edge of the MDR (of thick- 
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ness (w)-l (4A3)4)  is €(+A)%. Following Greenspan (1968, p. 36)) we find that the 
spin-up time is of order A/Q and thus increases with A. We infer that in general 
the spin-up is slowed down by hydromagnetic coupling. In  contrast, Benton 
(1973) finds that the spin-up of a confined electrically conducting fluid is acceler- 
ated by a magnetic field. If the fluid has a finite axial depth, it may happen that 
the thickness of t,he MDR exceeds the axial extent of the fluid. In  such a case the 
outer layer discussed in this paper would not be perceived. 

The present version of the paper was completed while I was holding an 
Alexander von Humboldt Fellowship, and my thanks are due to the A. v. H. 
Foundation, Germany. I am very grateful to Prof. Dr H. Poeverlein for providing 
me with all the facilities to work. 
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